
JOURNAL OF APPROXIMATION THEORY 11,73-84 (1974)

Inequalities for Generalized Hypergeometric Functions
of Two Variables*

YUDELL L. LUKE

Department of Mathematics, University ofMissouri, Kansas City, Missouri 64110

In a previous paper, we developed lower and upper bounds for the generalized
hypergeometric functions pFq , p = q, p = q + I, and certain confluent forms
under appropriate restrictions on the variable and parameters. In the present
paper, we extend these notions and obtain similar inequalities for certain
generalized hypergeometric functions of two variables.

1. INTRODUCTION

In a previous study [1], we uncovered two sided inequalities for the
generalized hypergeometricfunctions pFq(cxp ; pq; -z) withp = q,p = q + 1,
and certain confluent forms under rather liberal conditions on the parameters
and variable. In this paper, we extend our ideas to get similar inequalities
for certain hypergeometric functions of two variables. To this end, we make
free use of the notation and pertinent theorems in [1]. We also assume that
the reader is sufficiently informed of standard results on hypergeometric
functions of two variables given in [2] and [3].

As in the case of 2Fl(Z), hypergeometric functions of two variables of order
two associated with the names of Appell and Horn can be basically repre­
sented by Eulerian integrals. The simple representations are by means of
double integrals. In each case, there are also representations by means of
a single integral. Here, in most cases, the integrand contains a hypergeo­
metric function of a single variable or possibly a product of such functions.

There are 34 distinct convergent series of order two. Of these, we shall
deal in some detail only with the Appell functions F1 , F2 and Fa . The F4

function is briefly noted to illustrate a difficulty in getting simple inequalities.
Our treatment is sufficient to illustrate the techniques involved and the
kinds of results expected.
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2. INEQUALITIES FOR F1

We start with the integral representation

= r(y) II II S8+8'-1(1 _ S),,-8-8'-1 t8'-1(1 _ t)8-1
T(fl) r(fJ') rey - fJ - fJ/) 0 0

x [1 + xs(1 - t) + sty]-<X ds dt,

R(y) > R(fJ + fJ'), R(fJ) > 0, R(fJ') > 0,

I arg(I + x)[ < 1T, I arg(1 + y)1 < 1T. (1)

Expand [1 + xs(1 - t) + sty]-<x by the binomial theorem and apply known
results for beta integrals. Then we get the double series

I x 1< 1, Iy 1< 1, (2)

where we naturally suppose that y is not a negative integer or zero. It is
useful to note that

F!Crx, fJ, fJ/, y; -x, -y) = F1(a, fJ/, fJ, y; -y, -x). (3)

Apply the inequality (4.4) of [1] to [1 + xs(1 - t) + sty]-<X in (1) and use
(1.6) of [1]. Then

r(fJ + fJ/) II t8'-l(1 _ t)B-1 F (1, fJ + fJ/ I-a{x(l - t) + yt}) dt
r(fJ) r(fJ') 0 2 1 Y

F 1 - a 2ar(fJ + fJ/) II 8'-1(1 )8-1
< 1 < 2 + a + (1 + a) r(fl) r(fJ') 0 t - t

X 2F1 C' fJ y+ fJ/ 1- (1 i a) {x(l - t) + yt}) dt,

°~ a ~ 1, y > fJ + fJ/, fJ > 0, fJ/ > 0, x > 0, Y > 0. (4)

Next, apply (4.6) of [1] appropriately to the 2F1'S in (4) and again use (1.6)
of [1]. We find the following theorem.
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[
ex, ]-1 1 - ex 2ex [(y - fJ - fJ')

1 + y (fJx + fJ y) < F1 < 1 + ex +~ y(fJ + fJ' + 1)

(y +I)! fJ
+ y(fJ + fJ' + l)(fJ' + 1) 1 + «(1 + ex)j2(y + l))(fJ + fJ' + 1) x

fJ'(fJ + fJ' + 1) I]
+ 1 + «1 + ex)j2(y + l))[fJx + (fJ' + 1) y] ,

o ~ ex ~ 1, y > fJ + fJ', fJ > 0, fJ' > 0, Y ~ x > 0. (5)

Equation (3) states that F1 is unchanged if fJ +-t fJ' and x +-t y
simultaneously. The left inequality of (5) possesses this symmetry feature,
but this is not so for the right side. If we have to do with x ~ y > 0,
then in the right hand inequality of (5), replace fJ and x by fJ' and y, respec­
tively. If x = y, F1 = 2Fl(1, fJ + fJ'; y; -x) and (5) reduces to (4.7) of [1].

Now F1 has a representation in terms of a single integral from which we
can deduce another inequality. We have

F = r(y) Jl u~-I(l - U)Y-~-I(1 + ux)-Il(1 + uy)-Il' du
1 r(ex) r(y - ex) 0 '

R(y) > R(ex) > 0, I arg(1 + x)[ < 'IT, I arg(1 + y)1 < 'IT. (6)

Apply (4.4) of [1] to (1 + ux)-Il and (1 + uy)-Il'. When the inequalities are
multiplied, terms of the form

1 1 [a b]
(1 + au)(1 + bu) = (a - b) 1 +au - 1 + bu

appear with a > b > 0. Then with the aid of (1.6) of (1), we get

(f3'/! fJx) 2
F

l C~ex 1- fJ'y) - (fJ'yfJ~ fJJ 2
F

l C~ex 1- fJx)

< F1 < (~ ~ ~)(~ ~ ~:) + G~ ~:)(l ~ fJ) 2
F

l C~ex 1- C i fJ) x)

+ ( ~ ~ ~ )( 1 ~'fJ' ) 2Fl C~ex I - ( 1 ~ fJ' ) y)

+ (1 + fJ)[(l +1f':- (1 + fJ)x] 2
F

l C~ex 1- (1 ~ fJ') y)

4fJfJ'x (1, ex 1 ( 1 + fJ) )
- (l + fJ')[(l + fJ') y - (l + fJ)x)] 2

F
l Y - -2- x ,

o~ fJ ~ 1, 0 ~ fJ' ~ 1, y > ex > 0, fJ' ~ fJ, y ~ x > 0. (7)
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To each 2Fl in (7) apply (4.6) of [I] appropriately, and so obtain the next
theorem.

THEOREM 2.

( fJ'y )(1 + exfJ'y )-1 _(~_)
fJ'y - fJx y fJ'y - fJx

x \ y - ex + ex(y + I) [I + (ex + l)fJX ]-I/
/y(ex+l) (ex+l)y y+l \

(
1 - fJ ) ( I - f3' ) (y- ex )

< F1 < 1 + fJ 1 + fJ' + y(ex + 1)

I·1 fJ 2fJ' 1 fJ' 2fJ
X (1 ~ fJ )( 1 + fJ' ) + C~ fJ' )( 1 + fJ )

4fJfJ'y /
+ """"(1-+-fJ=)[~(1-+-fJ~')--"y - (1 + fJ) x] I

ex(y + 1) \ «I - fJ')/(1 + fJ'))(2fJ/(1 + fJ))
+ y(ex + 1) II + «ex + 1)/(y +1 ))«1 + fJ/2) x

-L «(1 - fJ)/(1 + fJ))(2fJ' /(1 + f3'))
I 1 + «ex + 1)/(y + 1))«(1 + f3')/2) y

+ 4fJf3'y(1 + fJ)-I[(1 + fJ') y - (1 + fJ) x ]-1/
1 + «ex + 1)/(y + 1))«1 + f3')/2) y I

4fJfJ'x(1 + fJ')-I[(1 + fJ') Y - (1 + fJ) X]-1

I + (ex/y)«(1 + fJ)/2) x

o :;( ex :;( I, y;? ex ;? 0, y > fJ + fJ', fJ > 0, f3' > 0, y;? x > o.
(8)

From (4.13) and (4.16) of [1], we have inequalities for (1 + z)-a: valid
for 1 < ex < 2 and -I < ex < 0, respectively. These can be used to get
further inequalities for F1 and the other hypergeometric functions of two
variables, but we omit such considerations.

3. INEQUALITIES FOR F2

We have the integral representation

fJ fJ' '. T(y) T(y')
F2 == F2(ex, , ,y, y , -x, -y) = T(fJ) T(fJ') T(y - 13) T(y - fJ')

I
I II ui3- 1(1 - U)y-i3-1 Vi3'-I(1 - V)Y'-i3'-l

X (1 + + )a: du dv,o 0 ux vy

R(y) > R(fJ) > 0, R(y') > R(fJ') > 0, I arg(1 + x + Y)I < TI'. (9)
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The double power series representation is

Ix+yl<l (10)

with the further restriction that neither y nor y' is a negative integer or zero.
The symmetry relation is

Fkx, f3, (3', y, y'; -x, -y) = F2(a, f3', f3, y', y; -y, -x). (11)

THEOREM 3.

+ 1 + ((1 + ex)/2)(({3' + 1)/(y' + 1)) y

f3f3'(y + I)(y' + 1) I

[
af3x af3'y]-1 1 - a 2a

1 + Y + --:yr- < F2 < 1 + a + (1 + a )(f3 + 1)(f3' + 1) yy'

l f3' f3' f3(y + I)(y' - f3')
X /(y - )(')1 - ) + 1 + ((1 + a)/2)((f3 + 1)/(y + 1)) x

f3'(y' + I)(y - (3)

+ 1 + ((1 + ex)/2)[((f3 + I)/(y + 1)) x + ((f3' + I)/(y' + 1)) y] ,

y > f3 > 0, y' > f3' > 0, °,s;; ex ,s;; 1, X > 0, Y > 0. (12)

Proof The procedure is much akin to that for Theorems 1 and 2. Apply
(4.4) of [1] to (1 + ux + vy)-o: in (9) and use (1.6) of [1]. Then under the
conditions of the theorem,

(13)

F(y') II vS'-I(I - v),,'-S'-1 (1, f31_ exx ) d
F(f3') F(y' - f3') 0 1 + (JI.yv 2

F
l Y 1 + (JI.yv v

1 - (JI. F(y') (2(J1.) II vf3'-I(I - V)Y'-f3'-1
< F2 < 1 + (JI. + F(f3') F(y' - f3') 1 + (JI. 0 1 + ((1 + (JI.)/2) yv

(I,f3\ ((I+(JI.)/2)X)
X 2

F
l y - 1 + ((1 + ex)/2) yv dv.

Next apply (4.6) of [1] appropriately to each 2Fl in (13). Use (1.6) of [1] to
integrate. Each side of the resulting inequality will involve a 2Fl one of whose
numerator arguments is unity. So (4.6) of [1] is again applicable and we
arrive at (12).

The two-sided inequality (12) is symmetric in the sense of (11).
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4. INEQUALITIES FOR F s

Consider

F s = FsCex, ex'; j3, j3', 1', -x, -y)

(15)IY I < I,Ix 1< 1,

= F(y) II tp-1(1 _ t)p'-1
rep) F(p') 0

x 2Fl (ex/ I-xt) 2Fl CX'~!' l-y(1 - t)) dt,
P + p' = 1', R(p) > 0, R(p') > 0,

I arg(1 + x)1 < 77, I arg(1 + Y)I < 77, (14)

F
s

= ~ (ex)m(ex'Mj3)m(j3')n( -x)m(_y)n
m.n~O (Y)m+n m!n!

I' is not a negative integer or zero, and

Fs(ex, ex', j3, j3', 1'; -x, -y) = Fs(ex', ex, j3', j3, 1'; -y, -x). (16)

THEOREM 4.

(17)

+ pp'y[v(p' + 1) + vv'(y + 1) + v'(p + 1)]

x [vp'(p' + 1)2 + v(y + ~)~(~' + 1)2

+ v' ( + 1)2 + v'(y + 1) p'(p + 1)2]
P P 1 + v' ,

2exj3 , 2ex' j3'
u = --;-"(ex--+--,---:1)-7-:(j3=-+ 1) , U = (ex' + 1)(j3' + 1) ,

(ex + 1)(j3 + 1) x , (ex' + 1)(j3' + 1) y
v = 2(1' + 1) , v = 2(1' + 1) ,

p + p' = 1', 0 ~ ex ~ p ~ I' - ex' ~ y, 0 ~ j3 ~ 1,

o ~ j3' ~ 1, x > 0, Y > O.

(1 + ex~x r1
(1 + ex'~'y r1

< F s < [1 _ u(p: 1)][1 _ u'(p~-: 1)]

+ [1 _ u(p + 1) ]~ [ + p'(y + ,1)]
p PY

p
1+v

+ [1 _ u'(p' -: 1) ]~ [ , + p(y + 1) ]
p PY

p
1+v

uu'
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Proof Apply (4.7) of [1] to each 2Fl in (14). In the algebra we encounter
the form

{(l + at)[l + b(l - t)]}-l = (a + b + ab)-l [ I ; at + I + b~1 - t)]­
Then with the aid of (1.6) of [1], we have

+ (PP'[(v(y + l)j(p + 1» + (vv'(y + 1)2j(p + l)(p' + I»)
+ (v'(y + l)j(p' + 1»]

x l v(y + 1) F (I, p 1_ v(y + 1) ) + v'(y + 1)
I p + 1 2 1 I' P + 1 p' + 1

F (l,p' 1_ v'(I' + 1»)/
x 2 1 I' p' + 1 I'

(a + b + ab)-l [a2Fl C~p I-a) + b2Fl C';' I-b)] < F3

< [1 _ (p ~ I) U][ I _ (p' :,1) u' ]

+ [1 _ (p + l)u] u'(p' + I) F (l,p 1_ v'Cy + 1»)
p p' 2 1 I' p' + 1

+ [1 _ Cp' + 1) U'] u(p + 1) F (1, p 1_ vCy + 1) )
p' P 2 1 I' P + 1

uu'(p + 1)(P' + 1)

exfJx
a = -p-,

ex'fJ'y
b=-,-,

p

p + p' = 1', 0 ~ ex ~ p ~ I' - ex' ~ 1', 0 ~ fJ ~ 1,

o ~ fJ' ~ 1, x > 0, Y > O. (18)

Now use (4.6) of [1] to get the stated result.
For convenience in the ensuing discussion let M(P) designate the right

side of (17). Both F3 and the left side of (17) are independent of p. This is
not so for M(P), as can be verified by a numerical example which is presented
later. In this connection, neither the left side nor the right side of (18) is
independent of p. In practice one should use that value of p for which M(P)
is a minimum. Here p, of course, must be restricted by the inequality con­
ditions given 'in (17). We now show how this can be readily accomplished.
First we observe that pp'M(p) vanishes when p = 0 and when p = y. This
implies that M(P) has the form

ap +b
M(p) = cp + d . (19)
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Thus three independent conditions are sufficient to determine this linear
fraction. Clearly M(p) has no relative extrema! points. By use of L'Hospita!'s
theorem, we have

M(O) = (1 _ )[ _ '( + 1)] + uu'(y - v') + u'(! - u)(y + I)
y u y u y y(1 + v') I + v'

+ u[y - u'(y + I)](y - v) + uu'
y(1 + v) y[v(y + 1) + vv'(y + I) + v]

x [v' - v(y + 1)(3y + I) + v(y + 1)3 + (y + I)
I + v I + v'

x {v'(y - I) + vy}], (20)

and yM(y) is given by the right side of (20) when u and v are interchanged
with u' and v', respectively. For a third condition, let p ---+ 00. Since y is
fixed, we take pip' ---+ -1. Then

yM(oo) = y(1 - u)(1 - u') - (u + u' - uu') + (y + I)

[
(1 - u) u' (1 - u') u UU']

x I + v' + I + v + (1 + v)(1 + v') .
(21)

Of course, further conditions useful for check purposes in numerical work
can be obtained by evaluating M(p) for specific values of p. M(p) follows by
solution of the equations

b
(f= M(O), ay + b = M( )

cy+d y,
a
- = M(oo).
c

(22)

Since M( 00) is finite, we can take c = I. So

a = M(oo), b = dM(O),
d _ y[R(y) - R(00)]

- R(O) - R(y) , (23)

and it is a simple matter to find that p which makes M(p) a minimum subject
to the conditions specified in (17).

We can get a further inequality by starting with another integral represen-
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tation of Fa which can be derived from (4). There put p = fJ whence
p' = y - fJ and replace t by 1 - t in the integrand. Thus

r(y) f 1 t Y
-

Il -
IO - t)ll-l ( a', fJ' \ )

Fa = r(fJ) r(y - fJ) 0 [1 + xO - t)]" 2
F} Y _ fJ - yt dt,

R(y) > R(fJ) > 0, I arg(l + x)[ < 7T, [ arg(l + y)[ < 7T, (24)

and after the manner of proof of our previous theorems, we have the
following.

THEOREM 6.

+ [fy + (0 + a)/2) X + «(1 + a)/2)fxy]

[1 + a(y - fJ) x ]-1[1 + afJfJ'y ]-1 < F < (1 - ~) 0 _ c)
y y(y - fJ) a 1 + a

+ (1 - (2aJ(1 + a))) c [fJ + (y - m(a + 1)]
y(y - fJ + 1) 1 + v'

+ (2a/0 + a))(1 - c) [ _ fJ + fJ(y + 1) ]
y(fJ+1) y l+v

(2a/0 + a)) C

[ 0 + a)/2) X I _ Q + fJ(y + 1) I
X y(fJ + 1) !y f' 1 + v \

+ fy lfJ + (y - fJ)(y + 1) I]
y(y - fJ + 1) 1 + v' I

_ (y - fJ + 1) u' f _ (a' + 1)(fJ' + 1)
c - y _ fJ ' - 2(y - fJ + 1) ,

°~ a ~ 1, °~ a' ~ 1, y > fJ > 0, fJ' > 0, X > 0, Y > 0, (25)

where u', v and v' are defined in (7).
We omit the proof. Notice that a further inequality can be derived from

(25) in view of the symmetry relation (6). A straightforward calculation
shows that the left side of (7) is less than the left side of (25) provided

ax(y - 2fJ) < a'fJ'y(y #2fJ) ,y =1= 2fJ.
y-

(26)

The two left side expressions are the same if y = 2fJ.
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We have
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5. INEQUALITIES FOR F4

_'. r(y) r(y')
F4 = FlC'i, f], y, y , -x(l + y), -y(l + X» = r(C'i) r(f]) r(y - C'i) r(y - f])

I

I II u"'-I(l - U)'Y-"'-1 vll- 1(1 - V)'Y'-Il-l du dv
x 0 0 (1 + UX)'Y+'Y'-"'-I(l + VY)'Y+'Y'-Il-l(l + ux + vy)",+Il+'Y+'Y'-1 '

R(y) > R(C'i) > 0, R(y') > R(f]) > 0, I arg(l + x)1 < 1T,

I arg(l + y)1 < 1T, I arg(l + X + y)[ < 1T, (27)

F
4

= :i:: (C'i)m+n(f])m+n(-x)m( _y)n I X1/2 I + I yl/2 I < ], (28)
m.n~O (y)m(y')n m!n! '

neither y nor y' is a negative integer or zero, and

FlC'i, f], y, y'; -x(l + y), -y(l + x» = Flf], C'i, y', y; -y(l + x), -x(l + y».

(29)

We can achieve an inequality for F4 after the manner of our previous
work, but a rather simple theoretical result does not emerge because the
integrand of (27) contains three binomial functions. Since a more suitable
integral definition ofF4 is not known, we do not further consider inequalities
for F4 •

6. INEQUALITIES FOR GENERALIZED HYPERGEOMETRIC FUNCTIONS

OF AN ARBITRARY NUMBER OF VARIABLES AND PARAMETERS

In the case of hypergeometric functions of a single variable, we know that
a P+1Fq+l can be defined as a beta integral whose kernel is a pFq. Further,
under appropriate restrictions, we can go from a pFqto a P_IFq by a confluence
argument, and by the use of the Laplace transform, we can go from a
pFq to a P+IFq if p ~ q or to a certain G-function if p = q + 1. These same
ideas carryover to hypergeometric functions of two variables.

In illustration, under appropriate restrictions on the variables and param­
eters which we omit, we have

F * - F *( R R' b f' ) r(c) r(f)
1 = 1 C'i, 1-" I-' ,a, ,y, c, ,-x, -y = r(a) r(c _ a) r(b) r(f - b)

X rrta- 1(l - t)c-a-l ub- 1(l - u)f-b-l F1(C'i, f], f]', y; -xt, -yu) dt du,
00 ~

F * = i (C'i)m+r.(f1)m(f1'>n(a)m(b>n(-x)m(_y)n (3])
1 m,n=O (Y)m+n(c)m(f)n m!n!
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Thus by integrating (5) with x and y replaced by xt and yu, respectively, and
by applying previous techniques, we can get inequalities for F1* and the
process can be iterated. We pursue this no further as the details are straight­
forward and there seems no immediate need to have the forms for the
applications.

We can also derive inequalities for hypergeometric functions of an arbitrary
number of variables such as those known as Lauricella's function by starting
with multiple integral representations of the Eulerian type which are obvious
generalizations of the forms for Fi , i = 1,2,3,4 (see [3]). For the most
part the results are complicated because of the multiplicity of binomial
functions which enter the integrands. The situation is much akin to the
analysis of F4 and we refrain from any further discussion of these generali­
zations at this time.

7. EXTENSION OF THE DOMAIN OF VALIDITY OF THE INEQUALITIES

Recall from [1] that Kummer's transformation formulas are useful to
analytically continue the 2Fl and IFI and to extend inequalities for these
functions. Contiguous relations are also pertinent for such purposes. Similar
type formulas are known for hypergeometric functions of two variables which
the reader can find in [3]. In general, all the procedures related in [1] to
extend the domain of validity of inequalities for hypergeometric functions
of a single variable have their analog for hypergeometric functions of two
variables. It seems that we have sufficiently elaborated on these points in this
work and also in our previous study, and further commentary is unnecessary.

8. NUMERICAL EXAMPLES

We conclude with some numerical examples.

(1) In F1 , let

Q-.l
fJ - 4'

From (5),

QI - .a
fJ - 4' y = 2, x-.l- 2' y = 1.

0.85333 < F1 = 0.87042 < 0.87241,

and from (8),

7383 655687
8687 = 0.84989 < FI < 752675 = 0.87114.

(32)

(33)
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(2) In F3 , let

YUDELL L. LUKE

cx-.l
- 4'

ex,'-.l.
- 2' [3 -.1

- 3' [3' - Q 2
~ 4' Y = , x = t, y = i.

From (20), the remark following (20) and (21), we find

M(O) = 0.8861709062, M(2) = 0.8861554028, M(oo) = 0.88611 32966,

(34)
respectively. Thus

M( ) = 0.88611p + 4.81356 = 088611 + 0.00031
p p + 5.43187 . p + 5.54187 ' (35)

whence M(p) is virtually independent of p for p ?' O. Clearly t ~ p ~ i
and M(p) is a minimum for p = i in which event MW = 0.88615. Hence

0.87075 < F3 = 0.88449 < 0.88615.

With the same basic data, from (25) we get

0.88357 < F3 = 0.88449 < 0.88617.
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